skip to main content


Search for: All records

Creators/Authors contains: "Rajaraman, Arvind"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Q-balls are non-topological solitons arising in scalar field theories. Solutions for rotating Q-balls (and the related boson stars) have been shown to exist when the angular momentum is equal to an integer multiple of the Q-ball chargeQ. Here we consider the possibility of classically long-lived metastable rotating Q-balls with small angular momentum, even for large charge, for all scalar theories that support non-rotating Q-balls. This is relevant for rotating extensions of Q-balls and related solitons such as boson stars as it impacts their cosmological phenomenology.

    arXiv:2302.11589

     
    more » « less
  2. A bstract We investigate a novel interplay between the decay and annihilation of a particle whose mass undergoes a large shift during a first order phase transition, leading to the particles becoming trapped in the false vacuum and enhancing their annihilation rates as the bubbles of true vacuum expand. This opens up a large region of the parameter space where annihilations can be important. We apply this scenario to baryogenesis, where we find that annihilations can be enhanced enough to generate the required baryon asymmetry even for relatively tiny annihilation cross sections with modest CP asymmetries. 
    more » « less
  3. Abstract

    Complex scalars inU(1)-symmetric potentials can form stable Q-balls, non-topological solitons that correspond to spherical bound-state solutions. If theU(1) charge of the Q-ball is large enough, it can support a tower of unstable radial excitations with increasing energy. Previous analyses of these radial excitations were confined to fixed parameters, leading to excited states with different chargesQ. In this work, we provide the first characterization of the radial excitations of solitons for fixed charge, providing the physical spectrum for such objects. We also show how to approximately describe these excited states analytically and predict their global properties such as radius, energy, and charge. This enables a complete characterization of the radial spectrum. We also comment on the decay channels of these excited states.

     
    more » « less
  4. A bstract Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this frame-work to include a Proca mass for the gauge boson, which can arise either from spontaneous symmetry breaking or via the Stückelberg mechanism. A heavy (light) gauge boson leads to solitons reminiscent of the global (gauged) case, but for intermediate values these Proca solitons exhibit completely novel features such as disconnected regions of viable parameter space and Q-shells with unbounded radius. We provide numerical solutions and excellent analytic approximations for both Proca Q-balls and Q-shells. These allow us to not only demonstrate the novel features numerically, but also understand and predict their origin analytically. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)